论文标题

统计方法和Schwarzschild黑洞中的Bekenstein界定

Statistical approaches and the Bekenstein bound conjecture in Schwarzschild black holes

论文作者

Abreu, Everton M. C., Neto, Jorge Ananias

论文摘要

当今理论物理学的挑战之一是充分了解像区域(如熵)这样的几何对象与恒温物体(如熵)之间的联系,因为区域像熵一样行为相似。 Bekenstein Bound提出了对平坦空间中区域熵的普遍约束。黑洞的Bekenstein-Hawking熵满足了Bekenstein结合的猜想。在本文中,我们已经表明,当我们使用重要的非高斯熵(例如Barrow,Tsallis和Kaniadakis)时,为了描述Schwarzschild Black Hole时,Bekenstein Boundure的猜想似乎失败了。

One of the challenges of today's theoretical physics is to fully understand the connection between a geometrical object like area and a thermostatistical one like entropy, since area behaves analogously like entropy. The Bekenstein bound suggests a universal constraint for the entropy of a region in a flat space. The Bekenstein-Hawking entropy of black holes satisfies the Bekenstein bound conjecture. In this paper we have shown that when we use important non-Gaussian entropies, like the ones of Barrow, Tsallis and Kaniadakis in order to describe the Schwarzschild black hole, then the Bekenstein bound conjecture seems to fail.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源