论文标题
耐转移的感知相似性度量
Shift-tolerant Perceptual Similarity Metric
论文作者
论文摘要
现有的感知相似性指标假定图像及其参考良好。结果,这些指标通常对人眼无法察觉的小对齐误差敏感。本文研究了微小的未对准的影响,特别是输入图像和参考图像之间对现有指标的微小变化,并因此发展了耐转移的相似性度量。本文以LPIP为基础,这是一种广泛使用的知觉相似性度量,并探讨了建筑设计注意事项,以使其可抵抗不可察觉的未对准。具体而言,我们研究了广泛的神经网络元素,例如抗缩合过滤,合并,跨性别,填充和跳过连接,并讨论它们在实现强大度量方面的作用。根据我们的研究,我们开发了一种新的基于神经网络的知觉相似性度量。我们的实验表明,我们的指标宽容不可察觉的转变,同时与人类相似性判断一致。
Existing perceptual similarity metrics assume an image and its reference are well aligned. As a result, these metrics are often sensitive to a small alignment error that is imperceptible to the human eyes. This paper studies the effect of small misalignment, specifically a small shift between the input and reference image, on existing metrics, and accordingly develops a shift-tolerant similarity metric. This paper builds upon LPIPS, a widely used learned perceptual similarity metric, and explores architectural design considerations to make it robust against imperceptible misalignment. Specifically, we study a wide spectrum of neural network elements, such as anti-aliasing filtering, pooling, striding, padding, and skip connection, and discuss their roles in making a robust metric. Based on our studies, we develop a new deep neural network-based perceptual similarity metric. Our experiments show that our metric is tolerant to imperceptible shifts while being consistent with the human similarity judgment.