论文标题

两次扩展的正交,用于评估Helmholtz层电势

Quadrature by Two Expansions for Evaluating Helmholtz Layer Potentials

论文作者

Weed, Jared, Ding, Lingyun, Huang, Jingfang, Cho, Min Hyung

论文摘要

在本文中,开发了两个扩展(QB2X)数值集成技术的正交,是针对Helmholtz方程的单层和双层电位在二维中开发的。 QB2X方法同时使用局部复杂的Taylor膨胀和平面波类型扩展来实现所得的表示,该表示在叶子框中以快速多极方法(FMM)层次结构结构在叶子框中在所有目标点(内部,外部或边界上)具有数值准确性。与按扩展(QBX)方法的原始正交相比,QB2X方法明确包括平面波扩展中边界几何的非线性,从而为整体中的边界几何形状和密度函数的高阶表示,并在标准FMM误差分析之后的融合。给出了数值结果,以证明helmholtz层电位的QB2X方法的性能,及其与原始QBX方法的比较,用于平坦和弯曲边界,具有各种密度。 QB2X方法克服了原始QBX方法的挑战,并且更适合具有复杂几何形状的Helmholtz方程的有效解决方案。

In this paper, a Quadrature by Two Expansions (QB2X) numerical integration technique is developed for the single and double layer potentials of the Helmholtz equation in two dimensions. The QB2X method uses both local complex Taylor expansions and plane wave type expansions to achieve a resulting representation which is numerically accurate for all target points (interior, exterior, or exactly on the boundary) inside a leaf box in the fast multipole method (FMM) hierarchical tree structure. Compared to the original Quadrature by Expansion (QBX) method, the QB2X method explicitly includes the nonlinearity from the boundary geometry in the plane wave expansions, thereby providing for higher order representations of both the boundary geometry and density functions in the integrand, with its convergence following standard FMM error analysis. Numerical results are presented to demonstrate the performance of the QB2X method for Helmholtz layer potentials and its comparison with the original QBX method for both flat and curved boundaries with various densities. The QB2X method overcomes the challenges of the original QBX method, and is better suited for efficient solutions of the Helmholtz equation with complex geometries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源