论文标题

学习在危险环境中从电影中评估电影合作逃生计划的危险

Learning to Assess Danger from Movies for Cooperative Escape Planning in Hazardous Environments

论文作者

Shree, Vikram, Allen, Sarah, Asfora, Beatriz, Banfi, Jacopo, Campbell, Mark

论文摘要

在改善机器人的感知和导航方面,已经有很多努力,但是它们在危险环境中的应用,例如在大火或地震期间,仍处于新生的阶段。我们在这里假设两个主要挑战:首先,在现实世界中很难复制这种情况,这对于培训和测试目的是必不可少的。其次,当前的系统无法完全利用这种危险环境中可用的丰富多模式数据。为了应对第一个挑战,我们建议以电影和电视节目的形式利用可用的大量视觉内容,并开发一个可以代表现实世界中遇到的危险环境的数据集。数据注释了对现实灾难图像的高级危险评级,并提供了相应的关键字,以总结场景的内容。为了应对第二项挑战,我们提出了一个多模式危险估计管道,用于协作人类机器人逃生方案。我们的贝叶斯框架通过融合机器人的相机传感器和人类语言输入的信息来改善危险估计。此外,我们使用具有风险意识的计划者来增强估计模块,该模块有助于识别出危险环境中更安全的道路。通过广泛的模拟,我们展示了多模式感知框架的优势,这些框架被转化为有形的好处,例如在协作人类机器人任务中的更高成功率。

There has been a plethora of work towards improving robot perception and navigation, yet their application in hazardous environments, like during a fire or an earthquake, is still at a nascent stage. We hypothesize two key challenges here: first, it is difficult to replicate such scenarios in the real world, which is necessary for training and testing purposes. Second, current systems are not fully able to take advantage of the rich multi-modal data available in such hazardous environments. To address the first challenge, we propose to harness the enormous amount of visual content available in the form of movies and TV shows, and develop a dataset that can represent hazardous environments encountered in the real world. The data is annotated with high-level danger ratings for realistic disaster images, and corresponding keywords are provided that summarize the content of the scene. In response to the second challenge, we propose a multi-modal danger estimation pipeline for collaborative human-robot escape scenarios. Our Bayesian framework improves danger estimation by fusing information from robot's camera sensor and language inputs from the human. Furthermore, we augment the estimation module with a risk-aware planner that helps in identifying safer paths out of the dangerous environment. Through extensive simulations, we exhibit the advantages of our multi-modal perception framework that gets translated into tangible benefits such as higher success rate in a collaborative human-robot mission.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源