论文标题

通过离子磨碎的超薄蚀刻口罩工程高品质的石墨烯超级晶格

Engineering high quality graphene superlattices via ion milled ultra-thin etching masks

论文作者

Ruiz, David Barcons, Sheinfux, Hanan Herzig, Hoffmann, Rebecca, Torre, Iacopo, Agarwal, Hitesh, Kumar, Roshan Krishna, Vistoli, Lorenzo, Taniguchi, Takashi, Watanabe, Kenji, Bachtold, Adrian, Koppens, Frank H. L.

论文摘要

纳米制作研究追求图案特征大小的小型化。在目前的最新状态下,可以使用电子束光刻将微米尺度区域的特征降低到30 nm。我们的工作展示了一种新的纳米制作技术,该技术允许将周期性结构降至16 nm。它基于聚焦的离子光束铣削的悬浮膜,具有最小的电子束光刻效果。然后将膜转移并用作硬蚀刻面膜。我们通过使用薄的石墨图案电极在单层石墨烯中在单层石墨烯中设计超晶格电位来基准我们的技术。我们的电子传输表征显示出高质量的超级晶格特性和丰富的Hofstadter蝴蝶谱。我们的技术为在2D材料中实现非常短的超晶格的道路开辟了道路,与天然Moire系统中的晶体相当,但具有控制晶格对称性和强度的能力。这可以为多功能固态量子模拟器平台和相关电子相的研究铺平道路。

Nanofabrication research pursues the miniaturization of patterned feature size. In the current state of the art, micron scale areas can be patterned with features down to ~ 30 nm pitch using electron beam lithography. Our work demonstrates a new nanofabrication technique which allows patterning periodic structures with a pitch down to 16 nm. It is based on focused ion beam milling of suspended membranes, with minimal proximity effects typical to electron beam lithography. The membranes are then transferred and used as hard etching masks. We benchmark our technique by engineering a superlattice potential in single layer graphene using a thin graphite patterned gate electrode. Our electronic transport characterization shows high quality superlattice properties and a rich Hofstadter butterfly spectrum. Our technique opens the path towards the realization of very short period superlattices in 2D materials, comparable to those in natural moire systems, but with the ability to control lattice symmetries and strength. This can pave the way for a versatile solid-state quantum simulator platform and the study of correlated electron phases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源