论文标题

使用图形卷积网络学习个性化表示

Learning Personalized Representations using Graph Convolutional Network

论文作者

Shen, Hongyu, Oh, Jinoh, Zhao, Shuai, Wang, Guoyin, Taghavi, Tara, Lee, Sungjin

论文摘要

生成精确反映客户行为的表示形式是在Alexa提供个性化技能路由体验的重要任务。目前,负责将Alexa流量路由到提供商或技能的动态路由(DR)团队依赖于两个功能作为个人信号:每个客户的每种技能使用情况的绝对交通计数和标准化的交通计数。他们俩都没有考虑基于网络的结构来用于客户与技能之间的交互,这些结构包含更丰富的信息以供客户偏好。在这项工作中,我们首先构建了基于图形的客户与调用技能的过去互动,在该技能中,用户请求(话语)将其建模为边缘。然后,我们提出了一个基于图形卷积网络(GCN)的模型,即个性化的动态路由功能编码器(PDRFE),该模型生成了从构建图中学到的个性化客户表示。与现有模型相比,PDRFE能够在图形卷积函数中进一步捕获上下文信息。我们提出的模型的性能通过下游任务,缺陷预测来评估,该任务可预测从客户的嵌入及其触发技能的嵌入中的缺陷标签。与基准相比,我们提出的模型的跨熵度量提高了多达41%的改善。

Generating representations that precisely reflect customers' behavior is an important task for providing personalized skill routing experience in Alexa. Currently, Dynamic Routing (DR) team, which is responsible for routing Alexa traffic to providers or skills, relies on two features to be served as personal signals: absolute traffic count and normalized traffic count of every skill usage per customer. Neither of them considers the network based structure for interactions between customers and skills, which contain richer information for customer preferences. In this work, we first build a heterogeneous edge attributed graph based customers' past interactions with the invoked skills, in which the user requests (utterances) are modeled as edges. Then we propose a graph convolutional network(GCN) based model, namely Personalized Dynamic Routing Feature Encoder(PDRFE), that generates personalized customer representations learned from the built graph. Compared with existing models, PDRFE is able to further capture contextual information in the graph convolutional function. The performance of our proposed model is evaluated by a downstream task, defect prediction, that predicts the defect label from the learned embeddings of customers and their triggered skills. We observe up to 41% improvements on the cross entropy metric for our proposed models compared to the baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源