论文标题
量子脆弱性分析以准确估计量子算法成功率
Quantum Vulnerability Analysis to Accurate Estimate the Quantum Algorithm Success Rate
论文作者
论文摘要
尽管量子计算机为信息处理提供了令人兴奋的机会,但他们目前在计算过程中遭受了噪音,但尚未完全理解。不完整的噪声模型导致量子程序成功率(SR)估计与实际机器结果之间的差异。例如,估计的成功概率(ESP)是用于衡量量子程序性能的最新度量。 ESP遭受了较差的预测,因为它无法说明电路结构,量子状态和量子计算机属性的独特组合。因此,迫切需要系统的方法,该方法可以阐明各种噪声影响,并准确,稳健地预测量子计算机的成功率,从而强调应用程序和设备缩放。在本文中,我们提出量子漏洞分析(QVA),以系统地量化对量子应用的错误影响,并解决当前成功率(SR)估计器与实际量子计算机结果之间的差距。 QVA确定目标量子计算的累积量子漏洞(CQV),该计算量化了基于应用于目标量子机的整个算法的量子误差影响。通过在三台27 QUIT量子计算机上使用众所周知的基准评估CQV,CQV成功估计的表现优于成功最先进的预测技术的估计概率,平均达到相对预测误差的平均降低了六倍,最佳案例的最佳情况为30倍,而实际SR率高于0.1%。已经提供了QVA的直接应用,可帮助研究人员在编译时选择有希望的编译策略。
While quantum computers provide exciting opportunities for information processing, they currently suffer from noise during computation that is not fully understood. Incomplete noise models have led to discrepancies between quantum program success rate (SR) estimates and actual machine outcomes. For example, the estimated probability of success (ESP) is the state-of-the-art metric used to gauge quantum program performance. The ESP suffers poor prediction since it fails to account for the unique combination of circuit structure, quantum state, and quantum computer properties specific to each program execution. Thus, an urgent need exists for a systematic approach that can elucidate various noise impacts and accurately and robustly predict quantum computer success rates, emphasizing application and device scaling. In this article, we propose quantum vulnerability analysis (QVA) to systematically quantify the error impact on quantum applications and address the gap between current success rate (SR) estimators and real quantum computer results. The QVA determines the cumulative quantum vulnerability (CQV) of the target quantum computation, which quantifies the quantum error impact based on the entire algorithm applied to the target quantum machine. By evaluating the CQV with well-known benchmarks on three 27-qubit quantum computers, the CQV success estimation outperforms the estimated probability of success state-of-the-art prediction technique by achieving on average six times less relative prediction error, with best cases at 30 times, for benchmarks with a real SR rate above 0.1%. Direct application of QVA has been provided that helps researchers choose a promising compiling strategy at compile time.