论文标题
通过伴随 - 伯恩斯坦法的混合局部和非局部扩散的非线性方程的先验Lipschitz估计值
A priori Lipschitz estimates for nonlinear equations with mixed local and nonlocal diffusion via the adjoint-Bernstein method
论文作者
论文摘要
我们通过Bernstein方法的整体改进,在Lebesgue空间中建立了混合局部和非局部扩散,强制梯度术语和无界右侧的方程式的先验估算。这取决于Bochner身份的非线性,非局部和变异版本,该标识涉及初始问题线性化的伴随方程。
We establish a priori Lipschitz estimates for equations with mixed local and nonlocal diffusion, coercive gradient terms and unbounded right-hand side in Lebesgue spaces through an integral refinement of the Bernstein method. This relies on a nonlinear, nonlocal and variational version of the Bochner identity that involves the adjoint equation of the linearization of the initial problem.