论文标题
使用频率调制的室温DNP钻石粉末
Room Temperature DNP of Diamond Powder Using Frequency Modulation
论文作者
论文摘要
动态核极化(DNP)是一种通过使用上谐波微波(MW)辐射将极化从电子旋转到核自旋来增强NMR信号的方法。在大多数情况下,使用单色连续波(MCW)MW辐照。最近,几个组表明,MW辐照的频率调制的使用可能会导致DNP增强的增加,而不是MCW获得的频率调制。先前已经使用稳定的有机根部4-羟基速度(Tempol)在20 K下的温度下使用稳定的有机根部4-羟基tempo(Tempol)研究了频率调节对固体效应(SE)和交叉效应(CE)的影响。在这里,除了SE和CE外,我们除了频率模型对倒透明效应(OE)的效果(OE)和the truncted CE(OE)$^$^tem ce(tem ce)。粉末。我们最近表明,由于钻石晶体中P1(替代氮)环境的异质性,钻石粉末可以同时表现出多种DNP机制。我们探讨了通过两个最重要的参数获得的增强频率调制1)调制频率,$ f_ {m} $(调制频率的变化速度)和2)调制振幅,$ΔΩ$(微波频率变化的大小)会影响通过每种机械机制获得的增强。 DNP期间的频率调制不仅允许我们改善DNP增强功能,而且还为我们提供了一种控制哪种DNP机制最活跃的方法。通过选择适当的调制参数,我们可以选择性地增强某些机制,同时抑制其他机制。
Dynamic nuclear polarization (DNP) is a method of enhancing NMR signals via the transfer of polarization from electron spins to nuclear spins using on-resonance microwave (MW) irradiation. In most cases, monochromatic continuous-wave (MCW) MW irradiation is used. Recently, several groups have shown that the use of frequency modulation of the MW irradiation can result in an additional increase in DNP enhancement above that obtained with MCW. The effect of frequency modulation on the solid effect (SE) and the cross effect (CE) has previously been studied using the stable organic radical 4-hydroxy TEMPO (TEMPOL) at temperatures under 20 K. Here, in addition to the SE and CE, we discuss the effect of frequency modulation on the Overhauser effect (OE) and the truncated CE (tCE) in the room-temperature $^{13}$C-DNP of diamond powders. We recently showed that diamond powders can exhibit multiple DNP mechanisms simultaneously due to the heterogeneity of P1 (substitutional nitrogen) environments within diamond crystallites. We explore the enhancement obtained via the two most important parameters for frequency modulation 1) Modulation frequency, $f_{m}$ (how fast the modulation frequency is varied) and 2) Modulation amplitude, $Δω$ (the magnitude of the change in microwave frequency) influence the enhancement obtained via each mechanism. Frequency modulation during DNP not only allows us to improve DNP enhancement, but also gives us a way to control which DNP mechanism is most active. By choosing the appropriate modulation parameters, we can selectively enhance some mechanisms while simultaneously suppressing others.