论文标题
CFT相关器来自三次曲率重力的形状变形
CFT correlators from shape deformations in Cubic Curvature Gravity
论文作者
论文摘要
我们发现全息纠缠熵的通用部分的协变表达对于CFTS对双重有效,可在多达五个散装尺寸的情况下对通用较高的曲率重力。我们使用此功能来计算三维CFTS双重与立方曲率重力的应力调整相关因子的通用系数。使用量规/重力二元性,我们为变形纠缠区域的纠缠熵进行了一个表达式,并从变形参数中熵的功率扩展中读取系数。特别是,我们获得了3点函数的$ T_4 $系数,并在使用纠缠熵功能获得最小和非最小分组的结果之间表现出差异。我们比较了考虑到这两个分裂的$ t_ {4} $所获得的表达式,并通过其他全息方法获得了独立的全息方法。我们发现与从非最低分裂获得的结果一致,而最小分裂得出的结果是不一致的,因此被排除在外。
We find a covariant expression for the universal part of the holographic entanglement entropy which is valid for CFTs dual to generic higher curvature gravities in up to five bulk dimensions. We use this functional to compute universal coefficients of stress-tensor correlators in three-dimensional CFTs dual to Cubic Curvature Gravity. Using gauge/gravity duality, we work out an expression for the entanglement entropy of deformed entangling regions and read the coefficients from the power expansion of the entropy in the deformation parameter. In particular, we obtain the $t_4$ coefficient of the 3-point function and exhibit a difference between the results obtained using the entanglement entropy functional for minimal and non-minimal splittings. We compare the obtained expressions for $t_{4}$ derived considering both splittings with results obtained through other holographic methods which are splitting-independent. We find agreement with the result obtained from the non-minimal splitting, whereas the result derived from the minimal splitting is inconsistent and it is therefore ruled out.