论文标题

基于邻居学位节点的局部图嵌入

Local Graph Embeddings Based on Neighbors Degree Frequency of Nodes

论文作者

Shirbisheh, Vahid

论文摘要

我们通过定义节点的某些局部特征和矢量表示,然后使用它们来通过深层神经网络来学习全球定义的指标和属性,从而提出了用于图形机器学习和网络分析的局部到全球策略。通过通过呼吸优先搜索扩展节点的程度概念,定义了{\ bf参数中心函数}的一般家族,可以揭示节点的重要性。我们将{\ bf邻居学位频率(NDF)}作为局部定义的无向图节点的局部嵌入到欧几里得空间中。这引起了节点的矢量标记,该标记编码了节点局部邻域的结构,可用于图同构测试。我们为我们的构造增加了灵活性,以便它也可以处理动态图。之后,广度优先搜索用于将NDF矢量表示形式扩展到节点的两个不同的矩阵表示,其中包含有关节点社区的高阶信息。我们的节点的矩阵表示为我们提供了一种新的方式,可视化节点的形状。此外,我们使用这些矩阵表示来获取适用于典型的深度学习算法的特征向量。为了证明这些节点嵌入实际上包含有关节点的一些信息,在一系列示例中,我们表明可以通过将深度学习应用于这些本地特征来学习Pagerank和紧密的中心性。我们的构造足够灵活,可以处理不断发展的图。最后,我们解释了如何适应有向图的构造。

We propose a local-to-global strategy for graph machine learning and network analysis by defining certain local features and vector representations of nodes and then using them to learn globally defined metrics and properties of the nodes by means of deep neural networks. By extending the notion of the degree of a node via Breath-First Search, a general family of {\bf parametric centrality functions} is defined which are able to reveal the importance of nodes. We introduce the {\bf neighbors degree frequency (NDF)}, as a locally defined embedding of nodes of undirected graphs into euclidean spaces. This gives rise to a vectorized labeling of nodes which encodes the structure of local neighborhoods of nodes and can be used for graph isomorphism testing. We add flexibility to our construction so that it can handle dynamic graphs as well. Afterwards, the Breadth-First Search is used to extend NDF vector representations into two different matrix representations of nodes which contain higher order information about the neighborhoods of nodes. Our matrix representations of nodes provide us with a new way of visualizing the shape of the neighborhood of a node. Furthermore, we use these matrix representations to obtain feature vectors, which are suitable for typical deep learning algorithms. To demonstrate these node embeddings actually contain some information about the nodes, in a series of examples, we show that PageRank and closeness centrality can be learned by applying deep learning to these local features. Our constructions are flexible enough to handle evolving graphs. Finally, we explain how to adapt our constructions for directed graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源