论文标题
ELF22:基于上下文的计数器巨魔数据集来对抗Internet巨魔
ELF22: A Context-based Counter Trolling Dataset to Combat Internet Trolls
论文作者
论文摘要
在线巨魔增加了社会成本,并对个人造成心理损害。随着自动化帐户利用机器人进行拖钓的扩散,目标用户很难在定量和定性上处理这种情况。为了解决这个问题,我们专注于自动化反击巨魔的方法,因为对战斗巨魔的反应鼓励社区用户在不损害言论自由的情况下保持持续的讨论。为此,我们为自动反应生成提出了一个新颖的数据集。特别是,我们构建了一个配对数据集,其中包含巨魔评论和使用标记的响应策略的反响应,这使我们的数据集对模型进行微调,以通过根据指定策略改变反响应来生成响应。我们进行了三个任务来评估数据集的有效性,并通过自动和人类评估评估结果。在人类评估中,我们证明了我们数据集中微调的模型显示出策略控制的句子生成的性能明显提高。
Online trolls increase social costs and cause psychological damage to individuals. With the proliferation of automated accounts making use of bots for trolling, it is difficult for targeted individual users to handle the situation both quantitatively and qualitatively. To address this issue, we focus on automating the method to counter trolls, as counter responses to combat trolls encourage community users to maintain ongoing discussion without compromising freedom of expression. For this purpose, we propose a novel dataset for automatic counter response generation. In particular, we constructed a pair-wise dataset that includes troll comments and counter responses with labeled response strategies, which enables models fine-tuned on our dataset to generate responses by varying counter responses according to the specified strategy. We conducted three tasks to assess the effectiveness of our dataset and evaluated the results through both automatic and human evaluation. In human evaluation, we demonstrate that the model fine-tuned on our dataset shows a significantly improved performance in strategy-controlled sentence generation.