论文标题

在贝叶斯软件可靠性评估中假设统计独立测试的不必要

The Unnecessity of Assuming Statistically Independent Tests in Bayesian Software Reliability Assessments

论文作者

Salako, Kizito, Zhao, Xingyu

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

When assessing a software-based system, the results of Bayesian statistical inference on operational testing data can provide strong support for software reliability claims. For inference, this data (i.e. software successes and failures) is often assumed to arise in an independent, identically distributed (i.i.d.) manner. In this paper we show how conservative Bayesian approaches make this assumption unnecessary, by incorporating one's doubts about the assumption into the assessment. We derive conservative confidence bounds on a system's probability of failure on demand (pfd), when operational testing reveals no failures. The generality and utility of the confidence bounds are illustrated in the assessment of a nuclear power-plant safety-protection system, under varying levels of skepticism about the i.i.d. assumption. The analysis suggests that the i.i.d. assumption can make Bayesian reliability assessments extremely optimistic - such assessments do not explicitly account for how software can be very likely to exhibit no failures during extensive operational testing despite the software's pfd being undesirably large.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源