论文标题

部分可观测时空混沌系统的无模型预测

Branched covers and pencils on hyperelliptic Lefschetz fibrations

论文作者

Fuller, Terry

论文摘要

概括了I. Baykur,K。Hayano和N. Monden(Arxiv:1903.02906)的工作,我们构建了无限型4-维歧管的无限家族,作为由Lefschetz铅笔的总空间获得的,该家族由Lefschetz铅笔的总空间获得。然后,将作者的概括(Arxiv:2108.04868)概括,我们表明,这些歧管中的每一个都是差异到复杂的表面,该表面是由两个高elliriptic lefschetz纤维的标准示例形成的纤维总和。因此,我们看到这些过度纤维化的Lefschetz纤维以及所有的纤维总和承认了一个无限描述的Lefschetz铅笔的家族,我们观察到的与该程度加倍程序形成的家族不同。

Generalizing work of I. Baykur, K. Hayano, and N. Monden (arXiv:1903.02906), we construct infinite families of symplectic 4-dimensional manifolds, obtained as total spaces of Lefschetz pencils constructed by explicit monodromy factorizations. Then, generalizing work of the author (arXiv:2108.04868), we show that each of these manifolds is diffeomorphic to a complex surface that is a fiber sum formed from two standard examples of hyperelliptic Lefschetz fibrations. Consequently, we see that these hyperelliptic Lefschetz fibrations, as well as all fiber sums of them, admit an infinite family of explicitly described Lefschetz pencils, which we observe are different from families formed by the degree doubling procedure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源