论文标题
CLT的明确条件以及通过有效的RPF速率对非均匀部分扩展随机动力学系统的相关结果
Explicit conditions for the CLT and related results for non-uniformly partially expanding random dynamical systems via effective RPF rates
论文作者
论文摘要
本文的目的是为中心限制定理提供第一类明确的条件,并在非均匀(部分)扩展非IID随机转换的非均匀(部分)设置中的相关结果,并将其视为随机过程以及一些随机的Gibbs度量。更准确地说,我们证明了中心限制定理(CLT),几乎肯定的不变性原理,中等偏差原理,贝里 - 埃文类型的估计和中等的本地局部中心限制,用于随机Birkhoff的随机birkhoff总和,由非明显的部分扩展的动态系统$t_Ω$ $ t_py $ toxply Gibbs unister unity positive $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $。
The purpose of this paper is to provide a first class of explicit sufficient conditions for the central limit theorem and related results in the setup of non-uniformly (partially) expanding non iid random transformations, considered as stochastic processes together with some random Gibbs measure. More precisely, we prove a central limit theorem (CLT), an almost sure invariance principle, a moderate deviations principle, Berry-Esseen type estimates and a moderate local central limit theorem for random Birkhoff sums generated by a non-uniformly partially expanding dynamical systems $T_ω$ and a random Gibbs measure $μ_ω$ corresponding to a random potential $ϕ_ω$ with a sufficiently regular variation.