论文标题
从社交网络结构中确定社交媒体上有影响力的经纪人
Identifying Influential Brokers on Social Media from Social Network Structure
论文作者
论文摘要
在给定的社交网络中识别影响者已成为各种应用程序的重要研究问题,包括加速信息在病毒营销中的传播以及防止假新闻和谣言的传播。文献包含有关识别可以将自己的信息传播给许多其他节点的有影响力的源散布器的丰富研究。相反,尚未完全探索能够将其他节点的信息传播到许多节点的有影响力的经纪人的识别。理论和实证研究表明,有影响力的来源散布器和经纪人的参与是促进大规模信息扩散级联的关键。因此,本文探讨了从给定社交网络中识别有影响力的经纪人的方法。通过使用三个社交媒体数据集,我们通过将其与从中心度度量获得的有影响力的源散布器和中央节点进行比较,研究了影响力经纪人的特征。我们的结果表明,(i)大多数有影响力的源散布者不是影响力的经纪人(反之亦然),(ii)中央节点和影响力的经纪人之间的重叠在Twitter数据集中很小(小于15%)。我们还解决了从中心度度量和节点嵌入中识别有影响力的经纪人的问题,并研究了社交网络特征在经纪人身份识别任务中的有效性。我们的结果表明,(iii)尽管单个中心度度量不能很好地表征有影响力的经纪人,但使用节点嵌入功能的预测模型达到了0.35--0.68的f $ _1 $得分,这表明社交网络特征在识别有影响力的经纪人方面有效。
Identifying influencers in a given social network has become an important research problem for various applications, including accelerating the spread of information in viral marketing and preventing the spread of fake news and rumors. The literature contains a rich body of studies on identifying influential source spreaders who can spread their own messages to many other nodes. In contrast, the identification of influential brokers who can spread other nodes' messages to many nodes has not been fully explored. Theoretical and empirical studies suggest that involvement of both influential source spreaders and brokers is a key to facilitating large-scale information diffusion cascades. Therefore, this paper explores ways to identify influential brokers from a given social network. By using three social media datasets, we investigate the characteristics of influential brokers by comparing them with influential source spreaders and central nodes obtained from centrality measures. Our results show that (i) most of the influential source spreaders are not influential brokers (and vice versa) and (ii) the overlap between central nodes and influential brokers is small (less than 15%) in Twitter datasets. We also tackle the problem of identifying influential brokers from centrality measures and node embeddings, and we examine the effectiveness of social network features in the broker identification task. Our results show that (iii) although a single centrality measure cannot characterize influential brokers well, prediction models using node embedding features achieve F$_1$ scores of 0.35--0.68, suggesting the effectiveness of social network features for identifying influential brokers.