论文标题

与ODE的潜在空间中的可复合文本控件

Composable Text Controls in Latent Space with ODEs

论文作者

Liu, Guangyi, Feng, Zeyu, Gao, Yuan, Yang, Zichao, Liang, Xiaodan, Bao, Junwei, He, Xiaodong, Cui, Shuguang, Li, Zhen, Hu, Zhiting

论文摘要

真实世界的文本应用程序通常涉及组成广泛的文本控制操作,例如编辑文本W.R.T.属性,操纵关键字和结构,并生成所需属性的新文本。先前的工作通常会学习/登录语言模型(LM)以执行操作的个人或特定子集。最近的研究以插件的方式研究了合并操作,通常在复杂序列空间中以昂贵的搜索或优化。本文提出了一种新的有效方法,用于在文本的紧凑型潜在空间中进行可组合的文本操作。文本潜在向量的低维和不同性使我们能够基于给定的任意插入运算符(例如属性分类器)基于普通微分方程(ODE)开发有效的采样器。通过通过有效的适应性将预告片的LMS(例如GPT2)连接到潜在空间,然后我们将采样向量解码为所需的文本序列。灵活的方法允许使用来自不同域中的任何相关数据获取的各种控制操作员(情感,时态,形式,关键字等)。实验表明,在我们的方法中构成这些操作员可以生成或编辑高质量文本,从而在发电质量和效率方面显着改善了以前的方法。

Real-world text applications often involve composing a wide range of text control operations, such as editing the text w.r.t. an attribute, manipulating keywords and structure, and generating new text of desired properties. Prior work typically learns/finetunes a language model (LM) to perform individual or specific subsets of operations. Recent research has studied combining operations in a plug-and-play manner, often with costly search or optimization in the complex sequence space. This paper proposes a new efficient approach for composable text operations in the compact latent space of text. The low-dimensionality and differentiability of the text latent vector allow us to develop an efficient sampler based on ordinary differential equations (ODEs) given arbitrary plug-in operators (e.g., attribute classifiers). By connecting pretrained LMs (e.g., GPT2) to the latent space through efficient adaption, we then decode the sampled vectors into desired text sequences. The flexible approach permits diverse control operators (sentiment, tense, formality, keywords, etc.) acquired using any relevant data from different domains. Experiments show that composing those operators within our approach manages to generate or edit high-quality text, substantially improving over previous methods in terms of generation quality and efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源