论文标题

通过时尚认知学习穿得很好

Dress Well via Fashion Cognitive Learning

论文作者

Pang, Kaicheng, Zou, Xingxing, Wong, Waikeung

论文摘要

时尚兼容性模型使在线零售商可以轻松获得质量良好的大量服装作品。但是,有效的时尚建议需要更深入地认知时尚的精确服务。在本文中,我们对时尚认知学习进行了首次研究,这是时尚建议以个人物理信息为条件。为此,我们提出了一个时尚认知网络(FCN),以了解服装组成和个人外观特征的视觉语义嵌入之间的关系。 FCN包含两个子模型,即装备编码器和多标签图神经网络(ML-GCN)。服装编码器使用卷积层将衣服编码到服装嵌入中。后一个模块通过堆叠的GCN学习标签分类器。我们对新收集的O4U数据集进行了广泛的实验,结果提供了有力的定性和定量证据,以表明我们的框架优于替代方法。

Fashion compatibility models enable online retailers to easily obtain a large number of outfit compositions with good quality. However, effective fashion recommendation demands precise service for each customer with a deeper cognition of fashion. In this paper, we conduct the first study on fashion cognitive learning, which is fashion recommendations conditioned on personal physical information. To this end, we propose a Fashion Cognitive Network (FCN) to learn the relationships among visual-semantic embedding of outfit composition and appearance features of individuals. FCN contains two submodules, namely outfit encoder and Multi-label Graph Neural Network (ML-GCN). The outfit encoder uses a convolutional layer to encode an outfit into an outfit embedding. The latter module learns label classifiers via stacked GCN. We conducted extensive experiments on the newly collected O4U dataset, and the results provide strong qualitative and quantitative evidence that our framework outperforms alternative methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源