论文标题
Unitobrain数据集:脑灌注数据集
UniToBrain dataset: a Brain Perfusion Dataset
论文作者
论文摘要
CT灌注(CTP)是一项体检,用于测量对比度溶液通过像素逐像素的大脑通过大脑的通过。目的是为缺血性病变迅速绘制“灌注图”(即脑血体积,脑血流量和峰值的时间),并能够区分核心区域和甲瘤区域。在缺血性中风的背景下,精确而快速的诊断可以确定脑组织的命运,并在紧急情况下指导干预和治疗。在这项工作中,我们介绍了UnitObrain数据集,这是CTP的第一个开源数据集。它包括一百多名患者的队列,并伴随着患者元数据和用最新算法获得的地面真相图。我们还建议使用欧洲图书馆ECVL和EDDL进行图像处理和开发深度学习模型,提出一种基于神经网络的新型算法。神经网络模型获得的结果与地面真相相匹配,并为所需数量的CT地图的潜在子采样开辟了道路,这对患者施加了沉重的辐射剂量。
The CT perfusion (CTP) is a medical exam for measuring the passage of a bolus of contrast solution through the brain on a pixel-by-pixel basis. The objective is to draw "perfusion maps" (namely cerebral blood volume, cerebral blood flow and time to peak) very rapidly for ischemic lesions, and to be able to distinguish between core and penumubra regions. A precise and quick diagnosis, in a context of ischemic stroke, can determine the fate of the brain tissues and guide the intervention and treatment in emergency conditions. In this work we present UniToBrain dataset, the very first open-source dataset for CTP. It comprises a cohort of more than a hundred of patients, and it is accompanied by patients metadata and ground truth maps obtained with state-of-the-art algorithms. We also propose a novel neural networks-based algorithm, using the European library ECVL and EDDL for the image processing and developing deep learning models respectively. The results obtained by the neural network models match the ground truth and open the road towards potential sub-sampling of the required number of CT maps, which impose heavy radiation doses to the patients.