论文标题

在某个陀螺仪的功率图上

On the power graph of a certain gyrogroup

论文作者

Singh, Yogendra, Tiwari, Anand Kumar, Ali, Fawad, Pandey, Mani Shankar

论文摘要

一个组$ g $的电源图$ p(g)$是一个简单的图形,带顶点套装$ g $,使得两个不同的vertices $ u,in g $ in g $ in $ p(g)$ in $ p(g)$,并且仅当$ m = v $或$ v $或$ v^m = u $,对于某些$ m \ in \ nr \ mathbb {n} $。本文的目的是介绍陀螺仪的幂图的概念。使用此过程,我们调查了某个gyrogroup的组合属性,例如$ g(n)$,$ n \ geq 3 $的订单$ 2^n $。特别是,我们确定了$ g(n)$的功率图的汉密尔顿性和平面度。因此,我们计算遥远的特性,解决多项式,霍索亚和相互的霍索亚多项式,特征多项式以及$ g(n)$的功率图的光谱半径。

The power graph $P(G)$ of a group $G$ is a simple graph with the vertex set $G$ such that two distinct vertices $u,v \in G$ are adjacent in $P(G)$ if and only if $u^m = v$ or $v^m = u$, for some $m \in \mathbb{N}$. The purpose of this paper is to introduce the notion of a power graph for gyrogroups. Using this, we investigate the combinatorial properties of a certain gyrogroup, say $G(n)$, of order $2^n$ for $n \geq 3$. In particular, we determine the Hamiltonicity and planarity of the power graph of $G(n)$. Consequently, we calculate distant properties, resolving polynomial, Hosoya and reciprocal Hosoya polynomials, characteristic polynomials, and the spectral radius of the power graph of $G(n)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源