论文标题
电气代码:材料的全带电子传输特性
ElecTra Code: Full-Band Electronic Transport Properties of Materials
论文作者
论文摘要
本文介绍了Electra,这是一种开源代码,该代码在充电载体的放松时间近似中求解了线性化的玻尔兹曼传输方程。 Electra代表“电子传输”并计算用于半导体材料的电子和热电传输系数,Seebeck系数,电子导热性和迁移率,用于单极和双极(小带隙)材料。该代码使用计算的全带和相关散射参数作为输入,并考虑3D和2D中的单晶材料。当前版本的代码(V1)考虑:i)具有声音子和非极性光学声子的弹性散射,在变形电势近似中,ii)具有极地声子的非弹性散射,iii)带有电离掺杂剂的散射,以及IV)合金散射。为用户提供了内部和谷间散射注意事项的选择。模拟输出还包括相关的放松时间和平均无路径。运输量的计算是费米水平位置,掺杂密度和温度的函数。 Electra可以与任何DFT代码接口,该代码将电子结构保存在“ .bxsf”格式中。在本文中,Electra针对已知分析解决方案的理想电子传输情况进行了验证,现有的代码采用了恒定的松弛时间近似以及实验良好的材料,例如SI,GE,GE,SIGE和GAAS。
This paper introduces ElecTra, an open-source code which solves the linearized Boltzmann transport equation in the relaxation time approximation for charge carriers in a full-band electronic structure of arbitrary complexity, including their energy, momentum, and band-index dependence. ElecTra stands for 'ELECtronic TRAnsport' and computes the electronic and thermoelectric transport coefficients electrical conductivity, Seebeck coefficient, electronic thermal conductivity, and mobility, for semiconductor materials, for both unipolar and bipolar (small bandgap) materials. The code uses computed full-bands and relevant scattering parameters as inputs and considers single crystal materials in 3D and 2D. The present version of the code (v1) considers: i) elastic scattering with acoustic phonons and inelastic scattering with non-polar optical phonons in the deformation potential approximation, ii) inelastic scattering with polar phonons, iii) scattering with ionized dopants, and iv) alloy scattering. The user is given the option of intra- and inter-valley scattering considerations. The simulation output also includes relevant relaxation times and mean-free-paths. The transport quantities are computed as a function of Fermi level position, doping density, and temperature. ElecTra can interface with any DFT code which saves the electronic structure in the '.bxsf' format. In this paper ElecTra is validated against ideal electronic transport situations of known analytical solutions, existing codes employing the constant relaxation time approximation, as well as experimentally well-assessed materials such as Si, Ge, SiGe, and GaAs.