论文标题

部分可观测时空混沌系统的无模型预测

Probabilistic forecasts of extreme heatwaves using convolutional neural networks in a regime of lack of data

论文作者

Miloshevich, George, Cozian, Bastien, Abry, Patrice, Borgnat, Pierre, Bouchet, Freddy

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Understanding extreme events and their probability is key for the study of climate change impacts, risk assessment, adaptation, and the protection of living beings. Forecasting the occurrence probability of extreme heatwaves is a primary challenge for risk assessment and attribution, but also for fundamental studies about processes, dataset and model validation, and climate change studies. In this work we develop a methodology to build forecasting models which are based on convolutional neural networks, trained on extremely long climate model outputs. We demonstrate that neural networks have positive predictive skills, with respect to random climatological forecasts, for the occurrence of long-lasting 14-day heatwaves over France, up to 15 days ahead of time for fast dynamical drivers (500 hPa geopotential height fields), and also at much longer lead times for slow physical drivers (soil moisture). This forecast is made seamlessly in time and space, for fast hemispheric and slow local drivers. We find that the neural network selects extreme heatwaves associated with a North-Hemisphere wavenumber-3 pattern. The main scientific message is that most of the time, training neural networks for predicting extreme heatwaves occurs in a regime of lack of data. We suggest that this is likely to be the case for most other applications to large scale atmosphere and climate phenomena. For instance, using one hundred years-long training sets, a regime of drastic lack of data, leads to severely lower predictive skills and general inability to extract useful information available in the 500 hPa geopotential height field at a hemispheric scale in contrast to the dataset of several thousand years long. We discuss perspectives for dealing with the lack of data regime, for instance rare event simulations and how transfer learning may play a role in this latter task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源