论文标题

多个:通过多任务学习,有监督的不规则张量分解

MULTIPAR: Supervised Irregular Tensor Factorization with Multi-task Learning

论文作者

Ren, Yifei, Lou, Jian, Xiong, Li, Ho, Joyce C, Jiang, Xiaoqian, Bhavani, Sivasubramanium

论文摘要

张量分解因其在多维数据中捕获潜在因素的固有能力而获得了越来越多的兴趣,并具有许多应用程序,例如推荐系统和电子健康记录(EHR)挖掘。已经提出了Parafac2及其变体来解决不规则的张量,其中不一对齐的一种张量模式,例如,EHR中推荐系统或患者的不同用户可能具有不同的记录。 PARAFAC2已成功应用于EHRS,用于提取有意义的医学概念(表型)。尽管有最近的进步,但当前模型的可预测性和可解释性并不令人满意,这限制了其用于下游分析的效用。在本文中,我们提出了多个多任务的多项张量分解,以多任务学习。多个多边是灵活的,可以纳入静态(例如,院内死亡率预测)和连续或动态(例如,通风的需求)任务。通过通过下游预测任务监督张量分解并利用来自多个相关预测任务的信息,Multipar不仅可以产生更有意义的表型,而且可以为下游任务提供更好的预测性能。我们在两个现实世界中的EHR数据集上进行了广泛的实验,以证明Multipar是可扩展的,并且与现有的最新方法相比,具有更有意义的亚组和更强的预测性能,可以使张量更好。

Tensor factorization has received increasing interest due to its intrinsic ability to capture latent factors in multi-dimensional data with many applications such as recommender systems and Electronic Health Records (EHR) mining. PARAFAC2 and its variants have been proposed to address irregular tensors where one of the tensor modes is not aligned, e.g., different users in recommender systems or patients in EHRs may have different length of records. PARAFAC2 has been successfully applied on EHRs for extracting meaningful medical concepts (phenotypes). Despite recent advancements, current models' predictability and interpretability are not satisfactory, which limits its utility for downstream analysis. In this paper, we propose MULTIPAR: a supervised irregular tensor factorization with multi-task learning. MULTIPAR is flexible to incorporate both static (e.g. in-hospital mortality prediction) and continuous or dynamic (e.g. the need for ventilation) tasks. By supervising the tensor factorization with downstream prediction tasks and leveraging information from multiple related predictive tasks, MULTIPAR can yield not only more meaningful phenotypes but also better predictive performance for downstream tasks. We conduct extensive experiments on two real-world temporal EHR datasets to demonstrate that MULTIPAR is scalable and achieves better tensor fit with more meaningful subgroups and stronger predictive performance compared to existing state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源