论文标题

强大的形态学方法,用于对非常高分辨率图像的语义分割

A Robust Morphological Approach for Semantic Segmentation of Very High Resolution Images

论文作者

Saravanan, Siddharth, Challa, Aditya, Danda, Sravan

论文摘要

图像语义分割的最新方法涉及计算密集的神经网络体系结构。由于内存和其他计算问题,这些方法中的大多数无法适应高分辨率图像分割。文献中的典型方法涉及神经网络体系结构的设计,这些神经网络体系结构可以从低分辨率图像和高分辨率对应物中的本地信息中融合全球信息。但是,设计用于处理高分辨率图像的体系结构非常复杂,并且涉及许多可能很难调整的超级参数。同样,这些架构中的大多数都需要对高分辨率图像进行训练的地面真理注释,这很难获得。在本文中,我们基于数学形态(MM)操作员开发了强大的管道,该管道可以无缝将任何现有的语义分割算法扩展到高分辨率图像。我们的方法不需要高分辨率图像的地面真相注释。它基于有效利用低分辨率对应物中的信息以及有关高分辨率图像的梯度信息。我们使用传统的形态算子从低分辨率图像上的推断标签中获得高质量的种子,并使用随机助行器传播种子标签,以优化边界的语义标签。我们表明,通过我们的方法获得的语义分割结果击败了高分辨率图像上现有的最新算法。我们从经验上证明了我们对管道中使用的超级参数的方法的鲁棒性。此外,我们表征了我们的管道适用的一些必要条件,并对所提出的方法提供了深入的分析。

State-of-the-art methods for semantic segmentation of images involve computationally intensive neural network architectures. Most of these methods are not adaptable to high-resolution image segmentation due to memory and other computational issues. Typical approaches in literature involve design of neural network architectures that can fuse global information from low-resolution images and local information from the high-resolution counterparts. However, architectures designed for processing high resolution images are unnecessarily complex and involve a lot of hyper parameters that can be difficult to tune. Also, most of these architectures require ground truth annotations of the high resolution images to train, which can be hard to obtain. In this article, we develop a robust pipeline based on mathematical morphological (MM) operators that can seamlessly extend any existing semantic segmentation algorithm to high resolution images. Our method does not require the ground truth annotations of the high resolution images. It is based on efficiently utilizing information from the low-resolution counterparts, and gradient information on the high-resolution images. We obtain high quality seeds from the inferred labels on low-resolution images using traditional morphological operators and propagate seed labels using a random walker to refine the semantic labels at the boundaries. We show that the semantic segmentation results obtained by our method beat the existing state-of-the-art algorithms on high-resolution images. We empirically prove the robustness of our approach to the hyper parameters used in our pipeline. Further, we characterize some necessary conditions under which our pipeline is applicable and provide an in-depth analysis of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源