论文标题
分析最小的排名sard猜想
The Analytic Minimal Rank Sard Conjecture
论文作者
论文摘要
在[4]中构建的亚分析异常分布的额外假设下,我们获得了分析类别中最小秩的sard猜想的证明。它确定从给定点,通过最小等级的单数水平曲线可访问的点集,这与分布的等级相对应,使lebesgue测量零。最小的排名sard猜想等于共同级别1分布的sard猜想。
We obtain, under an additional assumption on the subanalytic abnormal distribution constructed in [4], a proof of the minimal rank Sard conjecture in the analytic category. It establishes that from a given point the set of points accessible through singular horizontal curves of minimal rank, which corresponds to the rank of the distribution, has Lebesgue measure zero. The minimal rank Sard Conjecture is equivalent to the Sard Conjecture for co-rank 1 distributions.