论文标题

迈向心理上的动态偏好模型

Towards Psychologically-Grounded Dynamic Preference Models

论文作者

Curmei, Mihaela, Haupt, Andreas, Hadfield-Menell, Dylan, Recht, Benjamin

论文摘要

设计与时间变化偏好相符的内容的建议系统需要正确地审议建议对人类行为和心理状况的反馈影响。我们认为,建模建议对人们偏好的影响必须基于心理合理的模型。我们为开发扎根的动态偏好模型提供了一种方法。我们通过模型来证明这种方法,这些模型从心理学文献中捕获了三种经典效果:仅接触,操作措施和享乐调整。我们进行基于仿真的研究表明,心理模型表现出可以为系统设计提供信息的不同行为。我们的研究对建议系统中的动态用户建模有两个直接影响。首先,我们概述的方法广泛适用于心理基础动态偏好模型。它使我们能够根据他们对心理基础及其难以置信的预测的有限讨论来批评最近的贡献。其次,我们讨论动态偏好模型对建议系统评估和设计的含义。在一个示例中,我们表明参与度和多样性指标可能无法捕获理想的建议系统性能。

Designing recommendation systems that serve content aligned with time varying preferences requires proper accounting of the feedback effects of recommendations on human behavior and psychological condition. We argue that modeling the influence of recommendations on people's preferences must be grounded in psychologically plausible models. We contribute a methodology for developing grounded dynamic preference models. We demonstrate this method with models that capture three classic effects from the psychology literature: Mere-Exposure, Operant Conditioning, and Hedonic Adaptation. We conduct simulation-based studies to show that the psychological models manifest distinct behaviors that can inform system design. Our study has two direct implications for dynamic user modeling in recommendation systems. First, the methodology we outline is broadly applicable for psychologically grounding dynamic preference models. It allows us to critique recent contributions based on their limited discussion of psychological foundation and their implausible predictions. Second, we discuss implications of dynamic preference models for recommendation systems evaluation and design. In an example, we show that engagement and diversity metrics may be unable to capture desirable recommendation system performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源