论文标题

投影线产品的高度重合

Height coincidences in products of the projective line

论文作者

Mavraki, Niki Myrto, Schmidt, Harry, Wilms, Robert

论文摘要

我们考虑$(\ Mathbb {p}^1)^n $中的HyperSurfaces,该^n $在拆分映射方面包含一个通用的小动力高度序列,并将项目投影到$ N-1 $坐标上。我们表明,这些超曲面满足了其观点与零高度坐标之间的牢固巧合关系。更确切地说,它认为,在Zariski开放的密集子集中,这种超出表面$ N-1 $坐标的高度为零,并且仅当所有坐标的高度为零时。这是分解拆分图的动力学bogomolov猜想的分辨率的关键步骤。

We consider hypersurfaces in $(\mathbb{P}^1)^n$ that contain a generic sequence of small dynamical height with respect to a split map and project onto $n-1$ coordinates. We show that these hypersurfaces satisfy strong coincidence relations between their points with zero height coordinates. More precisely, it holds that in a Zariski-open dense subset of such a hypersurface $n-1$ coordinates have height zero if and only if all coordinates have height zero. This is a key step in the resolution of the dynamical Bogomolov conjecture for split maps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源