论文标题

图形网络的曲率信息多任务学习

Curvature-informed multi-task learning for graph networks

论文作者

New, Alexander, Pekala, Michael J., Le, Nam Q., Domenico, Janna, Piatko, Christine D., Stiles, Christopher D.

论文摘要

晶体和分子感兴趣的特性(例如带隙,弹性和溶解度)通常相互关联:它们受相同的基本物理定律的控制。但是,当最新的图形神经网络尝试同时预测多个属性(多任务学习(MTL)设置)时,它们经常表现不佳。这表明图形网络可能无法完全利用这些潜在的相似性。在这里,我们研究了这种现象的潜在解释:每个物业损失表面的曲率都有很大变化,导致学习效率低下。曲率上的这种差异可以通过查看每个属性损耗函数的Hessians的光谱特性来评估,该特性通过随机数值线性代数以无基质方式进行。我们在两个基准数据集(材料项目(MP)和QM8)上评估了我们的假设,并考虑这些发现如何为新型多任务学习模型的培训提供信息。

Properties of interest for crystals and molecules, such as band gap, elasticity, and solubility, are generally related to each other: they are governed by the same underlying laws of physics. However, when state-of-the-art graph neural networks attempt to predict multiple properties simultaneously (the multi-task learning (MTL) setting), they frequently underperform a suite of single property predictors. This suggests graph networks may not be fully leveraging these underlying similarities. Here we investigate a potential explanation for this phenomenon: the curvature of each property's loss surface significantly varies, leading to inefficient learning. This difference in curvature can be assessed by looking at spectral properties of the Hessians of each property's loss function, which is done in a matrix-free manner via randomized numerical linear algebra. We evaluate our hypothesis on two benchmark datasets (Materials Project (MP) and QM8) and consider how these findings can inform the training of novel multi-task learning models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源