论文标题

在建议文化内容的推荐中衡量通用性:提高文化公民身份的推荐系统

Measuring Commonality in Recommendation of Cultural Content: Recommender Systems to Enhance Cultural Citizenship

论文作者

Ferraro, Andres, Ferreira, Gustavo, Diaz, Fernando, Born, Georgina

论文摘要

推荐系统已成为策划文化内容的主要手段,并严重影响了个人文化经验的性质。尽管有关推荐系统的大多数研究都针对个性化用户体验进行了优化,但该范式并未捕获推荐系统影响整个用户人群的整体文化体验的方式。尽管现有的新颖性,多样性和公平研究探讨了系统如何与文化内容的更广泛的社会作用相关联,但它们并没有充分将文化作为核心概念和挑战。在这项工作中,我们将通用性作为一种新措施,反映了建议给定用户群体具有指定类别的文化内容的程度。我们提出的通用性指标回应了通过计算机科学与社会科学和人文科学研究人员之间的跨学科对话发展的一系列论点。关于民主社会中非营利,公共服务媒体系统的基础的原则,我们确定了地址和内容多样性的普遍性,以加强文化公民身份,是提供文化内容的推荐系统的特别相关目标。将电影推荐的多样性作为案例研究,以增强多元文化经验,我们通过经验比较系统的性能,并使用共同点和现有效用,多样性和公平指标进行比较。我们的结果表明,通用性捕获了与现有指标相辅相成的系统行为的属性,并提出需要在推荐系统中采取替代性,非个人化的干预措施,以增强用户人群的文化公民身份。通过这种方式,通用性有助于越来越多的奖学金,为数字媒体和ML系统开发了“公共商品”理由。

Recommender systems have become the dominant means of curating cultural content, significantly influencing the nature of individual cultural experience. While the majority of research on recommender systems optimizes for personalized user experience, this paradigm does not capture the ways that recommender systems impact cultural experience in the aggregate, across populations of users. Although existing novelty, diversity, and fairness studies probe how systems relate to the broader social role of cultural content, they do not adequately center culture as a core concept and challenge. In this work, we introduce commonality as a new measure that reflects the degree to which recommendations familiarize a given user population with specified categories of cultural content. Our proposed commonality metric responds to a set of arguments developed through an interdisciplinary dialogue between researchers in computer science and the social sciences and humanities. With reference to principles underpinning non-profit, public service media systems in democratic societies, we identify universality of address and content diversity in the service of strengthening cultural citizenship as particularly relevant goals for recommender systems delivering cultural content. Taking diversity in movie recommendation as a case study in enhancing pluralistic cultural experience, we empirically compare systems' performance using commonality and existing utility, diversity, and fairness metrics. Our results demonstrate that commonality captures a property of system behavior complementary to existing metrics and suggest the need for alternative, non-personalized interventions in recommender systems oriented to strengthening cultural citizenship across populations of users. In this way, commonality contributes to a growing body of scholarship developing 'public good' rationales for digital media and ML systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源