论文标题
Mates2Motion:学习机械CAD组件的工作方式
Mates2Motion: Learning How Mechanical CAD Assemblies Work
论文作者
论文摘要
我们描述了我们使用对CAD表示的深度学习来推断机械组件中交配部分之间自由度的工作。我们使用由CAD零件和配偶组成的大型实际机械组件的大型数据集训练我们的模型。我们提出了重新定义这些伴侣的方法,以使它们更好地反映组件的运动,并缩小可能的运动轴。我们还进行了一项用户研究,以创建带有更可靠标签的运动声明测试集。
We describe our work on inferring the degrees of freedom between mated parts in mechanical assemblies using deep learning on CAD representations. We train our model using a large dataset of real-world mechanical assemblies consisting of CAD parts and mates joining them together. We present methods for re-defining these mates to make them better reflect the motion of the assembly, as well as narrowing down the possible axes of motion. We also conduct a user study to create a motion-annotated test set with more reliable labels.