论文标题
用于临床表型的跨语性知识转移
Cross-Lingual Knowledge Transfer for Clinical Phenotyping
论文作者
论文摘要
临床表型可以从患者记录中自动提取临床状况,这对全球医生和诊所可能是有益的。但是,当前的最新模型主要适用于用英语编写的临床笔记。因此,我们研究了跨语性知识转移策略,以针对不使用英语并且有少量可用数据的诊所执行此任务。我们评估了希腊和西班牙诊所的这些策略,利用来自心脏病,肿瘤学和ICU等不同临床领域的临床笔记。我们的结果揭示了两种策略,这些策略优于最先进的方法:基于翻译的方法与域特异性编码器和跨语性编码器以及适配器结合使用。我们发现,这些策略在对稀有表型进行分类方面表现特别好,我们建议在哪种情况下更喜欢哪种方法。我们的结果表明,使用多语言数据总体可以改善临床表型模型,并可以补偿数据稀少度。
Clinical phenotyping enables the automatic extraction of clinical conditions from patient records, which can be beneficial to doctors and clinics worldwide. However, current state-of-the-art models are mostly applicable to clinical notes written in English. We therefore investigate cross-lingual knowledge transfer strategies to execute this task for clinics that do not use the English language and have a small amount of in-domain data available. We evaluate these strategies for a Greek and a Spanish clinic leveraging clinical notes from different clinical domains such as cardiology, oncology and the ICU. Our results reveal two strategies that outperform the state-of-the-art: Translation-based methods in combination with domain-specific encoders and cross-lingual encoders plus adapters. We find that these strategies perform especially well for classifying rare phenotypes and we advise on which method to prefer in which situation. Our results show that using multilingual data overall improves clinical phenotyping models and can compensate for data sparseness.