论文标题
使用分层均质化计算岩石的有效弹性模量
Computation of effective elastic moduli of rocks using hierarchical homogenization
论文作者
论文摘要
这项工作着重于计算来自3D微型计算学(Micro-CT)扫描图像的岩石均质化弹性性能。岩石的均质特性的准确计算,原型随机介质需要分辨复杂的基础微观结构和较大的视野,从而产生巨大的微CT图像。同质化需要在计算上解决局部弹性问题,这对于巨大的图像而言可能非常昂贵。为了减轻此问题,我们使用了重新归一化方法启发的方案,即分层均质化方法,其中大图像被分配为较小的子图像。使用周期性边界条件将单个子图像分别匀浆,然后组装成小得多的中间图像。中间图像再次被均质化,遵循周期性边界条件,以找到原始图像的最终均质弹性常数。基于FFT的弹性求解器用于解决相关的周期性弹性问题。在经验上证明,均质弹性常数的误差遵循幂定律缩放的指数-1相对于所有五个岩石的五个微结构的子图像大小。我们进一步表明,在小子图像均质化过程中包含周围的材料会减少最终均质弹性模量的误差,同时仍然尊重-1的指数。然后利用此功率定律缩放来确定基于Richardson外推的大型异质微结构的更好近似
This work focuses on computing the homogenized elastic properties of rocks from 3D micro-computed-tomography (micro-CT) scanned images. The accurate computation of homogenized properties of rocks, archetypal random media, requires both resolution of intricate underlying microstructure and large field of view, resulting in huge micro-CT images. Homogenization entails solving the local elasticity problem computationally which can be prohibitively expensive for a huge image. To mitigate this problem, we use a renormalization method inspired scheme, the hierarchical homogenization method, where a large image is partitioned into smaller subimages. The individual subimages are separately homogenized using periodic boundary conditions, and then assembled into a much smaller intermediate image. The intermediate image is again homogenized, subject to the periodic boundary condition, to find the final homogenized elastic constant of the original image. An FFT-based elasticity solver is used to solve the associated periodic elasticity problem. The error in the homogenized elastic constant is empirically shown to follow a power law scaling with exponent -1 with respect to the subimage size across all five microstructures of rocks. We further show that the inclusion of surrounding materials during the homogenization of the small subimages reduces error in the final homogenized elastic moduli while still respecting the power law with the exponent of -1. This power law scaling is then exploited to determine a better approximation of the large heterogeneous microstructures based on Richardson extrapolation