论文标题

单视图3D网格重建,用于可见和看不见的类别

Single-view 3D Mesh Reconstruction for Seen and Unseen Categories

论文作者

Yang, Xianghui, Lin, Guosheng, Zhou, Luping

论文摘要

单视3D对象重建是一项基本且具有挑战性的计算机视觉任务,旨在从单视RGB图像中恢复3D形状。大多数现有的基于深度学习的重建方法都是​​在同一类别上培训和评估的,并且在处理训练过程中未看到的新颖类别的对象时,它们无法正常工作。本文着眼于这个问题,解决了单视3D网格重建,以研究对看不见类别的模型概括,并鼓励模型从字面上重建对象。具体来说,我们建议一个端到端的两阶段网络GenMesh,以打破重建中的类别边界。首先,我们将复杂的图像到网格映射分解为两个简单的映射,即图像对点映射和点对点映射,而后者主要是几何问题,而不是对对象类别的依赖。其次,我们在2D和3D特征空间中设计了局部特征采样策略,以捕获跨对象共享的局部几何形状,以增强模型概括。第三,除了传统的点对点监督外,我们还引入了多视图轮廓损失来监督表面生成过程,该过程提供了额外的正则化,并进一步缓解了过度拟合的问题。实验结果表明,在不同的情况和各种指标下,特别是对于新物体,我们的方法显着优于Shapenet和Pix3d上现有作品的现有作品。项目链接是https://github.com/wi-sc/genmesh。

Single-view 3D object reconstruction is a fundamental and challenging computer vision task that aims at recovering 3D shapes from single-view RGB images. Most existing deep learning based reconstruction methods are trained and evaluated on the same categories, and they cannot work well when handling objects from novel categories that are not seen during training. Focusing on this issue, this paper tackles Single-view 3D Mesh Reconstruction, to study the model generalization on unseen categories and encourage models to reconstruct objects literally. Specifically, we propose an end-to-end two-stage network, GenMesh, to break the category boundaries in reconstruction. Firstly, we factorize the complicated image-to-mesh mapping into two simpler mappings, i.e., image-to-point mapping and point-to-mesh mapping, while the latter is mainly a geometric problem and less dependent on object categories. Secondly, we devise a local feature sampling strategy in 2D and 3D feature spaces to capture the local geometry shared across objects to enhance model generalization. Thirdly, apart from the traditional point-to-point supervision, we introduce a multi-view silhouette loss to supervise the surface generation process, which provides additional regularization and further relieves the overfitting problem. The experimental results show that our method significantly outperforms the existing works on the ShapeNet and Pix3D under different scenarios and various metrics, especially for novel objects. The project link is https://github.com/Wi-sc/GenMesh.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源