论文标题
安全和人类的自主驾驶:一种预测校正者潜在的游戏方法
Safe and Human-Like Autonomous Driving: A Predictor-Corrector Potential Game Approach
论文作者
论文摘要
本文提出了一个新型的自动驾驶汽车决策框架(AVS),称为预测器潜在游戏(PCPG),该框架由预测指标和校正器组成。为了启用类似人类的推理并表征了代理商的互动,制定了一个退缩的多人游戏。为了解决解决多玩家游戏的复杂性和实时操作所需的复杂性所带来的挑战,开发了基于潜在的游戏(PG)决策框架。在PG预测指标中,代理成本函数是启发式预定义的。我们承认,其他交通工具的行为,例如人类驱动的车辆和行人,可能不一定与预定义的成本功能一致。为了解决这个问题,设计了最佳的基于响应的PG校正器。在校正器中,测量自我车辆预测与周围剂的实际行为之间的动作偏差,并被馈回自我车辆的决策,以纠正由不准确的预定义成本函数造成的预测错误并改善自我车辆策略。 与大多数现有的游戏理论方法不同,该PCPG 1)涉及多游戏游戏,并确保存在纯净策略NASH平衡(PSNE),PSNE寻求算法的融合以及当存在多个PSNE时派生的PSNE的全球最佳性; 2)在多代理方案中是可扩展的; 3)在某些条件下保证自我车辆安全; 4)尽管其他人的成本功能未知,但仍近似系统的实际PSNE。 PG,PCPG和基于控制屏障功能(CBF)方法之间的比较研究是在各种交通情况下进行的,包括迎面即将来临的交通情况和多车辆相交 - 交叉横断的情况。
This paper proposes a novel decision-making framework for autonomous vehicles (AVs), called predictor-corrector potential game (PCPG), composed of a Predictor and a Corrector. To enable human-like reasoning and characterize agent interactions, a receding-horizon multi-player game is formulated. To address the challenges caused by the complexity in solving a multi-player game and by the requirement of real-time operation, a potential game (PG) based decision-making framework is developed. In the PG Predictor, the agent cost functions are heuristically predefined. We acknowledge that the behaviors of other traffic agents, e.g., human-driven vehicles and pedestrians, may not necessarily be consistent with the predefined cost functions. To address this issue, a best response-based PG Corrector is designed. In the Corrector, the action deviation between the ego vehicle prediction and the surrounding agent actual behaviors are measured and are fed back to the ego vehicle decision-making, to correct the prediction errors caused by the inaccurate predefined cost functions and to improve the ego vehicle strategies. Distinguished from most existing game-theoretic approaches, this PCPG 1) deals with multi-player games and guarantees the existence of a pure-strategy Nash equilibrium (PSNE), convergence of the PSNE seeking algorithm, and global optimality of the derived PSNE when multiple PSNE exist; 2) is computationally scalable in a multi-agent scenario; 3) guarantees the ego vehicle safety under certain conditions; and 4) approximates the actual PSNE of the system despite the unknown cost functions of others. Comparative studies between the PG, the PCPG, and the control barrier function (CBF) based approaches are conducted in diverse traffic scenarios, including oncoming traffic scenario and multi-vehicle intersection-crossing scenario.