论文标题
为可压缩层流的基准测试以面为中心的有限体积方法
Benchmarking the face-centred finite volume method for compressible laminar flows
论文作者
论文摘要
目的:本研究旨在使用数值基准来评估以面部为中心有限体积(FCFV)方法的鲁棒性和准确性(FCFV)方法。 设计/方法/方法:这项工作与文献中发表的参考解决方案进行了详细的比较 - 以及使用以商业牢房为中心的有限量软件计算的数值结果。 调查结果:FCFV方案提供了粘性应力张量和热通量的一阶准确近似,对细胞失真或拉伸而言无情。该策略证明了其在无粘性和粘性流中的效率,对于不可压缩的限制,其范围很广。在纯粹的无关流动中,在存在冲击波的情况下获得了非振荡近似值。在不可压缩的极限中,计算精确的解决方案而没有压力校正算法。该方法显示了其在粘性高马赫数流中的出色性能,从而实现了无碳纤维效应的物理上可接受的解决方案,并且误差低于5%的误差量。 独创性/价值:FCFV方法准确地评估了多种可压缩层流流,诸如拖动,升力和传热系数之类的工程兴趣,在非结构化的网格上,具有扭曲的和高度拉伸的单元格,其纵横比最高可达一万。该方法适合模拟复杂几何形状上的工业流,放松现有有限量求解器引入的网格质量要求,并减轻需要耗时的手动程序,以便由专业技术人员执行网格生成。
Purpose: This study aims to assess the robustness and accuracy of the face-centred finite volume (FCFV) method for the simulation of compressible laminar flows in different regimes, using numerical benchmarks. Design/methodology/approach: The work presents a detailed comparison with reference solutions published in the literature -- when available -- and numerical results computed using a commercial cell-centred finite volume software. Findings: The FCFV scheme provides first-order accurate approximations of the viscous stress tensor and the heat flux, insensitively to cell distortion or stretching. The strategy demonstrates its efficiency in inviscid and viscous flows, for a wide range of Mach numbers, also in the incompressible limit. In purely inviscid flows, non-oscillatory approximations are obtained in the presence of shock waves. In the incompressible limit, accurate solutions are computed without pressure correction algorithms. The method shows its superior performance for viscous high Mach number flows, achieving physically admissible solutions without carbuncle effect and predictions of quantities of interest with errors below 5%. Originality/value: The FCFV method accurately evaluates, for a wide range of compressible laminar flows, quantities of engineering interest, such as drag, lift and heat transfer coefficients, on unstructured meshes featuring distorted and highly stretched cells, with an aspect ratio up to ten thousand. The method is suitable to simulate industrial flows on complex geometries, relaxing the requirements on mesh quality introduced by existing finite volume solvers and alleviating the need for time-consuming manual procedures for mesh generation to be performed by specialised technicians.