论文标题

Ramsey图和Erdős-Mckay的证明

Anticoncentration in Ramsey graphs and a proof of the Erdős-McKay conjecture

论文作者

Kwan, Matthew, Sah, Ashwin, Sauermann, Lisa, Sawhney, Mehtaab

论文摘要

$ n $ vertex图被称为$ c $ -ramsey,如果它没有大小$ c \ log_2 n $的集团或独立集(即,如果它具有接近最佳的Ramsey行为)。在本文中,我们研究了拉姆西图中的边缘统计数据,特别是在随机顶点子集中的边缘数量分布非常精确地控制边的分布。这汇集了两个正在进行的研究线:Ramsey图的“随机”特性的研究以及对独立随机变量低度多项式的小球概率的研究。 证明是通过程度序列的“加性结构”二分法进行的,涉及傅立叶分析,随机矩阵理论,布尔函数理论,概率组合术和低排名近似的各种不同工具。我们结果的后果之一是解决了旧的Erdős和McKay的旧猜想,ErdőS提供了他臭名昭著的货币奖品之一。

An $n$-vertex graph is called $C$-Ramsey if it has no clique or independent set of size $C\log_2 n$ (i.e., if it has near-optimal Ramsey behavior). In this paper, we study edge-statistics in Ramsey graphs, in particular obtaining very precise control of the distribution of the number of edges in a random vertex subset of a $C$-Ramsey graph. This brings together two ongoing lines of research: the study of "random-like" properties of Ramsey graphs and the study of small-ball probabilities for low-degree polynomials of independent random variables. The proof proceeds via an "additive structure" dichotomy on the degree sequence, and involves a wide range of different tools from Fourier analysis, random matrix theory, the theory of Boolean functions, probabilistic combinatorics, and low-rank approximation. One of the consequences of our result is the resolution of an old conjecture of Erdős and McKay, for which Erdős offered one of his notorious monetary prizes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源