论文标题
传输:增强透明物体与变压器的垫子
TransMatting: Enhancing Transparent Objects Matting with Transformers
论文作者
论文摘要
图像垫是指从自然图像中预测未知前景区域的α值。先前的方法集中于从已知区域传播α值。但是,并非所有自然图像都有特别已知的前景。透明物体(例如玻璃,烟雾,网络等)的图像具有更少或没有已知的前景。在本文中,我们提出了一个基于变压器的网络传输,以模拟具有大型接受场的透明对象。具体来说,我们将三个可学习的三脚架重新设计为将高级语义特征引入自我发项机制。提出了一个小型的卷积网络,以利用全局功能和非背景掩码来指导从编码器到解码器的多尺度特征传播,以维护透明对象的上下文。此外,我们创建了具有小型已知前景区域的透明物体的高分辨率垫子数据集。在几种基准基准上进行的实验证明了我们提出的方法比当前最新方法的优越性。
Image matting refers to predicting the alpha values of unknown foreground areas from natural images. Prior methods have focused on propagating alpha values from known to unknown regions. However, not all natural images have a specifically known foreground. Images of transparent objects, like glass, smoke, web, etc., have less or no known foreground. In this paper, we propose a Transformer-based network, TransMatting, to model transparent objects with a big receptive field. Specifically, we redesign the trimap as three learnable tri-tokens for introducing advanced semantic features into the self-attention mechanism. A small convolutional network is proposed to utilize the global feature and non-background mask to guide the multi-scale feature propagation from encoder to decoder for maintaining the contexture of transparent objects. In addition, we create a high-resolution matting dataset of transparent objects with small known foreground areas. Experiments on several matting benchmarks demonstrate the superiority of our proposed method over the current state-of-the-art methods.