论文标题

低光的高光谱图像增强

Low-Light Hyperspectral Image Enhancement

论文作者

Li, Xuelong, Li, Guanlin, Zhao, Bin

论文摘要

由于高光谱摄像机传感器在较差的照明条件下捕获的能量不足,因此低光谱图像(HSIS)通常会遭受视野较低,光谱失真和各种声音的遭受。已经开发了一系列的HSI恢复方法,但它们在增强低光HSIS方面的有效性受到限制。这项工作着重于低光HSI增强任务,该任务旨在揭示隐藏在黑暗地区的空间光谱信息。为了促进低光HSI处理的开发,我们收集了室内和室外场景的低光HSI(LHSI)数据集。基于拉普拉斯金字塔分解和重建,我们开发了在LHSI数据集中训练的端到端数据驱动的低光HSI增强(HSIE)方法。通过观察到照明与HSI的低频组件有关,而纹理细节与高频组件密切相关,拟议的HSIE旨在具有两个分支。采用照明增强分支以减少分辨率来启发低频组件。高频改进分支用于通过预测的掩码来完善高频组件。此外,为了提高信息流量和提高性能,我们引入了具有残留致密连接的有效通道注意块(CAB),该连接是照明增强分支的基本块。 LHSI数据集的实验结果证明了HSIE在定量评估措施和视觉效果中的有效性和效率。根据遥感印度松树数据集的分类性能,下游任务受益于增强的HSI。可用数据集和代码:\ href {https://github.com/guanguanboy/hsie} {https://github.com/guanguanboy/hsie}。

Due to inadequate energy captured by the hyperspectral camera sensor in poor illumination conditions, low-light hyperspectral images (HSIs) usually suffer from low visibility, spectral distortion, and various noises. A range of HSI restoration methods have been developed, yet their effectiveness in enhancing low-light HSIs is constrained. This work focuses on the low-light HSI enhancement task, which aims to reveal the spatial-spectral information hidden in darkened areas. To facilitate the development of low-light HSI processing, we collect a low-light HSI (LHSI) dataset of both indoor and outdoor scenes. Based on Laplacian pyramid decomposition and reconstruction, we developed an end-to-end data-driven low-light HSI enhancement (HSIE) approach trained on the LHSI dataset. With the observation that illumination is related to the low-frequency component of HSI, while textural details are closely correlated to the high-frequency component, the proposed HSIE is designed to have two branches. The illumination enhancement branch is adopted to enlighten the low-frequency component with reduced resolution. The high-frequency refinement branch is utilized for refining the high-frequency component via a predicted mask. In addition, to improve information flow and boost performance, we introduce an effective channel attention block (CAB) with residual dense connection, which served as the basic block of the illumination enhancement branch. The effectiveness and efficiency of HSIE both in quantitative assessment measures and visual effects are demonstrated by experimental results on the LHSI dataset. According to the classification performance on the remote sensing Indian Pines dataset, downstream tasks benefit from the enhanced HSI. Datasets and codes are available: \href{https://github.com/guanguanboy/HSIE}{https://github.com/guanguanboy/HSIE}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源