论文标题

在ECML PKDD 2021中发现Maya的奥秘:机器学习挑战与发现挑战研讨会的精选贡献

Discover the Mysteries of the Maya: Selected Contributions from the Machine Learning Challenge & The Discovery Challenge Workshop at ECML PKDD 2021

论文作者

Kocev, Dragi, Simidjievski, Nikola, Kostovska, Ana, Dimitrovski, Ivica, Kokalj, Žiga

论文摘要

该卷包含来自机器学习挑战的选定贡献“发现玛雅人的奥秘”,该挑战在欧洲机器学习和原理和知识发现的欧洲挑战赛曲目(ECML PKDD 2021)中提出。 遥感大大加速了古代玛雅人森林地区的传统考古景观调查。典型的探索和发现尝试,除了关注整个古老的城市外,还集中在单个建筑物和结构上。最近,已经成功地尝试了使用机器学习来识别古老的玛雅人定居点。这些尝试虽然相关,但却集中在狭窄的区域上,并依靠高质量的空中激光扫描(ALS)数据,该数据仅涵盖古代玛雅人曾经定居的地区的一小部分。另一方面,由欧洲航天局(ESA)哨兵任务制作的卫星图像数据丰富,更重要的是公开。旨在通过执行不同类型的卫星图像(Sentinel-1和Sentinel-1和Sentinel-2)数据的数据和ALS(LIDAR)数据的集成图像分割来定位和识别古老的Maya架构(建筑物,Aguadas和平台)的“发现和识别古代Maya架构(建筑物,Aguadas和平台)的挑战的“发现和识别古老的Maya架构(建筑物,Aguadas和平台)的挑战的“发现玛雅的奥秘”挑战,该挑战的“发现”。

The volume contains selected contributions from the Machine Learning Challenge "Discover the Mysteries of the Maya", presented at the Discovery Challenge Track of The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2021). Remote sensing has greatly accelerated traditional archaeological landscape surveys in the forested regions of the ancient Maya. Typical exploration and discovery attempts, beside focusing on whole ancient cities, focus also on individual buildings and structures. Recently, there have been several successful attempts of utilizing machine learning for identifying ancient Maya settlements. These attempts, while relevant, focus on narrow areas and rely on high-quality aerial laser scanning (ALS) data which covers only a fraction of the region where ancient Maya were once settled. Satellite image data, on the other hand, produced by the European Space Agency's (ESA) Sentinel missions, is abundant and, more importantly, publicly available. The "Discover the Mysteries of the Maya" challenge aimed at locating and identifying ancient Maya architectures (buildings, aguadas, and platforms) by performing integrated image segmentation of different types of satellite imagery (from Sentinel-1 and Sentinel-2) data and ALS (lidar) data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源