论文标题

IDLAT:科学数据的重要性驱动潜在生成方法

IDLat: An Importance-Driven Latent Generation Method for Scientific Data

论文作者

Shen, Jingyi, Li, Haoyu, Xu, Jiayi, Biswas, Ayan, Shen, Han-Wei

论文摘要

基于深度学习的潜在表示已被广泛用于众多科学可视化应用,例如等法相似性分析,音量渲染,流场合成和数据减少,仅举几例。但是,现有的潜在表示主要是从原始数据中以无监督的方式生成的,这使得很难合并域兴趣以控制潜在表示的大小和重建数据的质量。在本文中,我们提出了一种新颖的重要性驱动的潜在表示,以促进领域利益引导的科学数据可视化和分析。我们利用空间重要性图来代表各种科学利益,并将它们作为特征转化网络的输入来指导潜在的生成。我们通过与自动编码器一起训练的无损熵编码算法,进一步降低了潜在尺寸,从而提高了存储和存储效率。我们对我们方法产生的潜在表示的有效性和效率进行了定性和定量评估,并使用来自多个科学可视化应用程序的数据产生的潜在表示。

Deep learning based latent representations have been widely used for numerous scientific visualization applications such as isosurface similarity analysis, volume rendering, flow field synthesis, and data reduction, just to name a few. However, existing latent representations are mostly generated from raw data in an unsupervised manner, which makes it difficult to incorporate domain interest to control the size of the latent representations and the quality of the reconstructed data. In this paper, we present a novel importance-driven latent representation to facilitate domain-interest-guided scientific data visualization and analysis. We utilize spatial importance maps to represent various scientific interests and take them as the input to a feature transformation network to guide latent generation. We further reduced the latent size by a lossless entropy encoding algorithm trained together with the autoencoder, improving the storage and memory efficiency. We qualitatively and quantitatively evaluate the effectiveness and efficiency of latent representations generated by our method with data from multiple scientific visualization applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源