论文标题

经典弹性水力动力学的适应性和应用用于游泳丝

Well-posedness and applications of classical elastohydrodynamics for a swimming filament

论文作者

Mori, Yoichiro, Ohm, Laurel

论文摘要

我们考虑了一个经典的弹性水力动力学模型,该模型是在$ \ mathbb {r}^3 $中进行平面运动的不可扩展性细丝。流体动力学通过电阻力理论描述,纤维弹性受Euler-Bernoulli束理论的控制。我们的目标是双重的:(1)作为开发丝状弹性水力动力学的数学分析的起点,尤其是对不可扩展性约束的分析处理,以及(2)作为应用,证明了内部光纤的条件,强迫自由纤维丝游泳。我们对纤维游泳速度的分析补充了内部纤维强迫的数值优化,以及一种模拟不可扩展的游泳者的新型数值方法。

We consider a classical elastohydrodynamic model of an inextensible filament undergoing planar motion in $\mathbb{R}^3$. The hydrodynamics are described by resistive force theory, and the fiber elasticity is governed by Euler-Bernoulli beam theory. Our aim is twofold: (1) Serve as a starting point for developing the mathematical analysis of filament elastohydrodynamics, particularly the analytical treatment of an inextensibility constraint, and (2) As an application, prove conditions on internal fiber forcing that allow a free-ended filament to swim. Our analysis of fiber swimming speed is supplemented with a numerical optimization of the internal fiber forcing, as well as a novel numerical method for simulating an inextensible swimmer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源