论文标题
功能表征的有限测试
Finite Tests from Functional Characterizations
论文作者
论文摘要
从经典上讲,测试决策者是否属于特定偏好类别涉及两种主要方法。第一个被称为功能方法,假定访问整个需求函数。第二个是揭示的偏好方法,构建了不平等,以测试有限需求数据。本文通过使用功能性方法通过偏好可学习性结果来测试有限数据来桥接这些方法。我们开发了一种计算有效算法,该算法基于偏好族的功能特征生成选择数据的测试。我们为各种应用提供了这些限制,包括同型和弱可分开的偏好,而后者揭示的偏好表征证明是NP的。我们还解决了不确定性下的选择,为中心偏好提供了测试。最后,我们进行了模拟练习,表明我们的测试在有限样本中有效,并且准确拒绝不属于指定类的需求。
Classically, testing whether decision makers belong to specific preference classes involves two main approaches. The first, known as the functional approach, assumes access to an entire demand function. The second, the revealed preference approach, constructs inequalities to test finite demand data. This paper bridges these methods by using the functional approach to test finite data through preference learnability results. We develop a computationally efficient algorithm that generates tests for choice data based on functional characterizations of preference families. We provide these restrictions for various applications, including homothetic and weakly separable preferences, where the latter's revealed preference characterization is provably NP-Hard. We also address choice under uncertainty, offering tests for betweenness preferences. Lastly, we perform a simulation exercise demonstrating that our tests are effective in finite samples and accurately reject demands not belonging to a specified class.