论文标题
用机器学习的建议解决在线分配问题
Solving the Online Assignment Problem with Machine Learned Advice
论文作者
论文摘要
在线分配问题在运营研究和计算机科学中起着重要作用,这就是为什么要引起了提高其解决方案质量的极大关注的原因。由于有关输入的不完整信息,在线算法很难产生最佳解决方案。使用竞争比率测量在线算法的解决方案的质量。没有在线确定性算法可以比(2N-1)更好地实现竞争比率。已经表明,在线计算中的建议改善了在线问题的竞争比率的下限。在线计算中的建议可以解释为在线算法的其他信息,以补偿缺乏有关整个输入序列的信息。在这项研究中,我们研究了引入机器学习建议如何改善此问题的竞争比率。通过模拟机器学习算法,我们为在线分配问题提供了在线算法,该算法预先预测了整个输入。我们利用一种最佳离线算法来提供预测输入的匹配解决方案。此外,我们研究了机器学习的预测错误如何影响在线算法的竞争比率。我们利用基准数据集来执行我们的经验分析。我们表明,随着机器学习预测误差的增加,解决方案质量也会降低。此外,误差的大小与输入的大小成正比。该结果类似于在线分配问题最佳确定性算法的竞争比率,这也取决于参数n。
The online assignment problem plays an important role in operational research and computer science which is why immense attention has been given to improving its solution quality. Due to the incomplete information about the input, it is difficult for online algorithms to produce the optimal solution. The quality of the solution of an online algorithm is measured using a competitive ratio. No online deterministic algorithm can achieve a competitive ratio better than (2n-1). It has been shown that advice in online computation improves the lower bound of the competitive ratio of online problems. Advice in online computation can be interpreted as additional information for the online algorithm to compensate for the lack of information about the whole input sequence. In this study, we investigate how introducing machine-learned advice could improve the competitive ratio for this problem. We provide an online algorithm for the online assignment problem by simulating a machine learning algorithm that predicts the whole input in advance. We utilize an optimal offline algorithm to provide a matching solution from the predicted input. Furthermore, we investigate how the prediction error of machine learning affects the competitive ratio of the online algorithm. We utilize a benchmark data set to perform our empirical analysis. We show that as the Machine Learning prediction error increases, the solution quality decreases. Moreover, the magnitude of error is directly proportional to the size of the input. This result is analogous to the competitive ratio of the best deterministic algorithm for the online assignment problem which is dependent also on the parameter n.