论文标题
银河系的恒星光环被倾斜且双重破裂
The Stellar Halo of the Galaxy is Tilted & Doubly Broken
论文作者
论文摘要
现代银河调查揭示了一场古老的合并,该合并主导了我们银河系的恒星光环(\ textit {gaia} -sausage-enceladus,GSE)。使用H3调查中的化学丰度和运动学,我们在径向范围内从该合并中识别5559个光晕星$ r _ {\ text {gal}} = 6-60 \ text {kpc} $。我们将H3的完整选择函数转发,以推断出恒星光环的该积分成分的密度曲线。我们考虑一个带有主轴的一般椭圆形,相对于半乳突轴旋转,并与多重破裂的功率定律相结合。最佳拟合模型是三轴椭圆形(轴比率10:8:7)倾斜了$ 25^\ circ $,朝着银河平面上方朝着太阳倾斜,而在12 kpc和28 kpc的半径上,折断半径为偶发。该结果解决了光环破裂半径的文献价值中的长期二分法,以$ \ sim15 \ text {kpc} $或$ \ sim30 \ text {kpc} $具有单一破裂的力量法律。 N体模拟表明,断裂半径连接到恒星轨道的启示剂堆积,因此观察到的双重破裂为GSE合并的初始条件和演变提供了新的见解。此外,恒星光环的倾斜和三轴性可能意味着一部分基础暗物质光环也被倾斜和三轴。这对银河系的动态质量建模以及直接的暗物质检测实验具有重要意义。
Modern Galactic surveys have revealed an ancient merger that dominates the stellar halo of our Galaxy (\textit{Gaia}-Sausage-Enceladus, GSE). Using chemical abundances and kinematics from the H3 Survey, we identify 5559 halo stars from this merger in the radial range $r_{\text{Gal}}=6-60\text{ kpc}$. We forward model the full selection function of H3 to infer the density profile of this accreted component of the stellar halo. We consider a general ellipsoid with principal axes allowed to rotate with respect to the Galactocentric axes, coupled with a multiply-broken power law. The best-fit model is a triaxial ellipsoid (axes ratios 10:8:7) tilted $25^\circ$ above the Galactic plane towards the Sun and a doubly-broken power law with breaking radii at 12 kpc and 28 kpc. This result resolves the long-standing dichotomy in literature values of the halo breaking radius, being at either $\sim15\text{ kpc}$ or $\sim30\text{ kpc}$ assuming a singly-broken power law. N-body simulations suggest that the breaking radii are connected to apocenter pile-ups of stellar orbits, and so the observed double-break provides new insight into the initial conditions and evolution of the GSE merger. Furthermore, the tilt and triaxiality of the stellar halo could imply that a fraction of the underlying dark matter halo is also tilted and triaxial. This has important implications for dynamical mass modeling of the Galaxy as well as direct dark matter detection experiments.