论文标题
通过正方形层次结构的总和进行组合优化
Combinatorial Optimization via the Sum of Squares Hierarchy
论文作者
论文摘要
我们研究了正方形(SOS)层次结构的总和,以期朝着组合优化。我们调查了SOS层次结构的使用以在图形上使用其光谱属性获得近似算法。我们提供了Feige和Krauthgamer对层次结构的性能的简化证明,以实现随机图上的最大集团问题。我们还提出了Guruswami和Sinop的结果,该结果显示了如何在低阈值级别图上获得最小一分解问题的近似算法。 我们研究了SOS层次结构的不Xibibibibibibibibility结果,以解决一般约束满意度问题以及涉及图密度的问题,例如最密度$ k $ -subgraph问题。我们利用更强大的概率分析随机实例的扩展,改善了现有的不合适性结果,以解决一般约束满意度问题。我们检查了约束满意度问题与图表上的密度问题之间的联系。使用它们,我们获得了最密集的$ k $ -subhypergraph问题和最小$ p $ - 工会问题的层次结构的新的不Xibibibibibibibibility结果,这些结果已通过降低证明。 我们还说明了相对较新的伪校准概念,以构建SOS层次结构的完整性差距,以最大值和最大$ K $ -CSP。据我们所知,我们提出的最大$ K $ -CSP的应用在文献中尚未在文献中介绍。
We study the Sum of Squares (SoS) Hierarchy with a view towards combinatorial optimization. We survey the use of the SoS hierarchy to obtain approximation algorithms on graphs using their spectral properties. We present a simplified proof of the result of Feige and Krauthgamer on the performance of the hierarchy for the Maximum Clique problem on random graphs. We also present a result of Guruswami and Sinop that shows how to obtain approximation algorithms for the Minimum Bisection problem on low threshold-rank graphs. We study inapproximability results for the SoS hierarchy for general constraint satisfaction problems and problems involving graph densities such as the Densest $k$-subgraph problem. We improve the existing inapproximability results for general constraint satisfaction problems in the case of large arity, using stronger probabilistic analyses of expansion of random instances. We examine connections between constraint satisfaction problems and density problems on graphs. Using them, we obtain new inapproximability results for the hierarchy for the Densest $k$-subhypergraph problem and the Minimum $p$-Union problem, which are proven via reductions. We also illustrate the relatively new idea of pseudocalibration to construct integrality gaps for the SoS hierarchy for Maximum Clique and Max $K$-CSP. The application to Max $K$-CSP that we present is known in the community but has not been presented before in the literature, to the best of our knowledge.