论文标题

贝叶斯伪标签:对稳健有效的半监督分割的期望最大化

Bayesian Pseudo Labels: Expectation Maximization for Robust and Efficient Semi-Supervised Segmentation

论文作者

Xu, Mou-Cheng, Zhou, Yukun, Jin, Chen, de Groot, Marius, Alexander, Daniel C., Oxtoby, Neil P., Hu, Yipeng, Jacob, Joseph

论文摘要

本文涉及分割中的伪标记。我们的贡献是四倍。首先,我们提出了伪标签的新表述,作为一种预期最大化(EM)算法,用于清晰的统计解释。其次,我们纯粹基于原始伪标记,即Segpl,提出了一种半监督的医学图像分割方法。我们证明,SEGPL是针对针对2D多级MRI MRI脑肿瘤分段任务和3D二进制CT肺肺血管细分任务的半监督分割的最新一致性正则方法的竞争方法。与先前方法相比,SEGPL的简单性允许更少的计算成本。第三,我们证明了SEGPL的有效性可能源于其稳健性,以防止分布噪声和对抗性攻击。最后,在EM框架下,我们通过变异推理引入了SEGPL的概率概括,该推断学习了训练过程中伪标记的动态阈值。我们表明,具有变异推理的SEGPL可以通过金标准方法深度合奏对不确定性估计进行不确定性估计。

This paper concerns pseudo labelling in segmentation. Our contribution is fourfold. Firstly, we present a new formulation of pseudo-labelling as an Expectation-Maximization (EM) algorithm for clear statistical interpretation. Secondly, we propose a semi-supervised medical image segmentation method purely based on the original pseudo labelling, namely SegPL. We demonstrate SegPL is a competitive approach against state-of-the-art consistency regularisation based methods on semi-supervised segmentation on a 2D multi-class MRI brain tumour segmentation task and a 3D binary CT lung vessel segmentation task. The simplicity of SegPL allows less computational cost comparing to prior methods. Thirdly, we demonstrate that the effectiveness of SegPL may originate from its robustness against out-of-distribution noises and adversarial attacks. Lastly, under the EM framework, we introduce a probabilistic generalisation of SegPL via variational inference, which learns a dynamic threshold for pseudo labelling during the training. We show that SegPL with variational inference can perform uncertainty estimation on par with the gold-standard method Deep Ensemble.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源