论文标题
通过门诊心电图和GSR数据对压力进行分类
Classification of Stress via Ambulatory ECG and GSR Data
论文作者
论文摘要
在医疗保健中,发现压力并使个人能够监测其心理健康和福祉是具有挑战性的。现在,可穿戴技术的进步可实现连续的生理数据收集。这些数据可以通过心理生理分析为心理健康和行为状态提供见解。但是,由于收集的数据数量,需要自动分析以提供及时的结果。机器学习已显示出在对受控实验室环境中的健康应用程序提供生理数据的自动分类方面的功效。但是,卧床不受控制的环境提供了其他挑战,需要进一步的建模才能克服。这项工作从经验上评估了使用机器学习分类器的几种方法,使用带有自我报告的应力注释的卧床环境中记录的生理数据来检测压力。培训部分的一部分微笑数据集可以在提交之前对方法进行评估。最佳应力检测方法达到了90.77%的分类精度,91.24 F1得分,90.42敏感性和91.08特异性,利用Extratrees分类器和特征插款方法。同时,挑战数据的准确性低得多,为59.23%(从Beats-MTU,用户名Zacdair提交#54)。在这项工作中探讨了性能差异的原因。
In healthcare, detecting stress and enabling individuals to monitor their mental health and wellbeing is challenging. Advancements in wearable technology now enable continuous physiological data collection. This data can provide insights into mental health and behavioural states through psychophysiological analysis. However, automated analysis is required to provide timely results due to the quantity of data collected. Machine learning has shown efficacy in providing an automated classification of physiological data for health applications in controlled laboratory environments. Ambulatory uncontrolled environments, however, provide additional challenges requiring further modelling to overcome. This work empirically assesses several approaches utilising machine learning classifiers to detect stress using physiological data recorded in an ambulatory setting with self-reported stress annotations. A subset of the training portion SMILE dataset enables the evaluation of approaches before submission. The optimal stress detection approach achieves 90.77% classification accuracy, 91.24 F1-Score, 90.42 Sensitivity and 91.08 Specificity, utilising an ExtraTrees classifier and feature imputation methods. Meanwhile, accuracy on the challenge data is much lower at 59.23% (submission #54 from BEaTS-MTU, username ZacDair). The cause of the performance disparity is explored in this work.