论文标题
快速视图合成的级联且可推广的神经辐射场
Cascaded and Generalizable Neural Radiance Fields for Fast View Synthesis
论文作者
论文摘要
我们提出CG-NERF,这是一种级联和可概括的神经辐射场方法,可查看合成。最近的概括综合方法可以使用附近的一组输入视图来呈现高质量的新型视图。但是,由于神经辐射场均匀点采样的性质,渲染速度仍然很慢。现有的特定场景方法可以有效地训练和呈现新颖的观点,但不能概括地看不见数据。我们的方法通过提出两个新型模块来解决快速和概括视图合成的问题:粗糙的辐射场预测因子和一个基于卷积的神经渲染器。该体系结构基于隐式神经领域的一致场景几何形状,并使用单个GPU有效地使新视图有效。我们首先在DTU数据集的多个3D场景上训练CG-NERF,并且该网络只能仅使用光度损耗就看不见的真实和合成数据产生高质量且准确的新型视图。此外,我们的方法可以利用单个场景的密集参考图像集来产生准确的新颖视图,而无需依赖其他明确表示,并且仍然保持了预训练模型的高速渲染。实验结果表明,在各种合成和真实数据集上,CG-NERF的表现优于最新的可概括神经渲染方法。
We present CG-NeRF, a cascade and generalizable neural radiance fields method for view synthesis. Recent generalizing view synthesis methods can render high-quality novel views using a set of nearby input views. However, the rendering speed is still slow due to the nature of uniformly-point sampling of neural radiance fields. Existing scene-specific methods can train and render novel views efficiently but can not generalize to unseen data. Our approach addresses the problems of fast and generalizing view synthesis by proposing two novel modules: a coarse radiance fields predictor and a convolutional-based neural renderer. This architecture infers consistent scene geometry based on the implicit neural fields and renders new views efficiently using a single GPU. We first train CG-NeRF on multiple 3D scenes of the DTU dataset, and the network can produce high-quality and accurate novel views on unseen real and synthetic data using only photometric losses. Moreover, our method can leverage a denser set of reference images of a single scene to produce accurate novel views without relying on additional explicit representations and still maintains the high-speed rendering of the pre-trained model. Experimental results show that CG-NeRF outperforms state-of-the-art generalizable neural rendering methods on various synthetic and real datasets.