论文标题

引诱地区的纠缠楔

Entanglement Wedges for Gravitating Regions

论文作者

Bousso, Raphael, Penington, Geoff

论文摘要

在张量网络的属性中,我们推测,可以将任意重力区域$ a $分配给$ e $中的准 - 局部运算符中的准本地运算符具有全息代表,以$ a $ a $ a $ $ a $。宇宙无需渐近平坦或广告,$ a $不必渐近或弱引力。在静态的Cauchy表面$σ$上,我们建议$ e $是$ a $的超集,可最大程度地减少广义熵。我们证明,$ e $满足了一种无用的定理和适当形式的强大尺寸和嵌套。如果$ a $位于广告的共形边界的一部分附近,那么我们的提案将减少到适用于$ a $的量子最小的表面处方。我们还讨论了该提案的可能协变扩展,尽管没有一个完全令人满意。我们的结果与$ e $中的信息相一致,即$ e $中的信息在半经典描述中$ a $,但是可以从$ a $的$ a $中恢复,从而破坏了该描述。因此,我们建议$ e $量化全息编码的范围,这是量子重力的重要非本地特征。

Motivated by properties of tensor networks, we conjecture that an arbitrary gravitating region $a$ can be assigned a generalized entanglement wedge $E\supset a$, such that quasi-local operators in $E$ have a holographic representation in the full algebra generated by quasi-local operators in $a$. The universe need not be asymptotically flat or AdS, and $a$ need not be asymptotic or weakly gravitating. On a static Cauchy surface $Σ$, we propose that $E$ is the superset of $a$ that minimizes the generalized entropy. We prove that $E$ satisfies a no-cloning theorem and appropriate forms of strong subadditivity and nesting. If $a$ lies near a portion $A$ of the conformal boundary of AdS, our proposal reduces to the Quantum Minimal Surface prescription applied to $A$. We also discuss possible covariant extensions of this proposal, although none prove completely satisfactory. Our results are consistent with the conjecture that information in $E$ that is spacelike to $a$ in the semiclassical description can nevertheless be recovered from $a$, by microscopic operators that break that description. We thus propose that $E$ quantifies the range of holographic encoding, an important nonlocal feature of quantum gravity, in general spacetimes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源