论文标题

多种几何形式的旋转液体形式

Form of spinning liquids in diverse geometries

论文作者

Menker, Paul, Herczynski, Andrzej

论文摘要

提出了一系列用于各种几何船只中水稳态旋转的实验。该实验集中在旋转液体的几何特性以及其表面拓扑的变化上,从类似于球到圆环的球(即,从属0到1),以实现足够大的角度速度。考虑了圆柱形,平面矩形,立方,球形和圆锥体容器。锥是一个例外,因为无论旋转速度多快,某些液体总是保留在其顶点中。还表明,对于内部的任何数量的液体,存在一个临界角速度,以高于该液体,不能再限制液体,因此从锥体中排出,从锥体中自发打破对称性。实验研究了这种不稳定。

A series of experiments for steady state rotation of water in vessels of various geometries is presented. The experiments focus on the geometrical characteristics of the rotating liquids and the change in their surface topology, from that akin to a sphere to that of a torus (i.e., from genus 0 to 1), for sufficiently large angular speeds. Cylindrical, planar rectangular, cubic, spherical, and conical containers are considered. The cone is an exception as some liquid always remains in its apex, no matter how fast the spin. It is shown also that for any amount of liquid within, there exists a critical angular speed above which the liquid can no longer be confined and is therefore expelled from the cone spontaneously breaking the symmetry. This instability is investigated experimentally.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源